<i>Name:</i> Applied Mathematics (Master Degree)		<i>Neptun-code:</i> BMXAME1MNE		<i>Number of periods/week</i> (<i>lec/sem/lab</i>) regular: 3/3/0
Credit points: 8Prerequisite: -Requirement (assessment method): midterm testsPrerequisite: -signature and exam. (Matlab project work)-				
<i>Lecturer:</i> Dr. László HANKA PhD	Position: Associate professor		<i>Faculty and Institute name</i> : Bánki Donát Faculty of Mechanical and Safety Engineering, Institute of Mechatronics and Vehicle Engineering	
Course Description				
Week 1. First order and higher order ordinary differential equationsWeek 2. Matrix algebra, systems of linear equations, LU decompositionWeek 3. Eigentheory, applications, diagonalization, powers of matrices, Markov-chainWeek 4. Singular value decomposition of a matrix, Moore-Penrose inverseWeek 5. Linear systems of ordinary differential equations with constant coefficientsWeek 6. Description of phase plane, applicationsWeek 7. Euler's method, Runge-Kutta methodsWeek 8. Laplace-transform and it's applications. Convolution theorem, transfer functionWeek 9. LTI systems, discrete and continuous signals, ConvolutionWeek 10. Real and Complex Fourier-Series,Week 11. Fourier-transform, Z-transformWeek 12. Approximation, least squares method, best fit curvesWeek 13. Interpolation methods (Lagrange, Hermite, Spline)Week 14. MatLab, Simulink and applicationsReqirements:1. Midterm tests:Week 7. midterm test 2, (25 points)Week 14. improvement, and make up of missed midterm testsMidterm tests are written tests, mathematical problems must be solved (practice and not				
2. Signature : Taking both test is mandatory! If someone achieves 25 points, he/she gets the signature. If not, he/she can take exam for signature on the first week of exam period.				
 3. Exam: Written test (50 points) in exam period. (in case of "online exam period" a Matlab project work (25 points) will be the requirement and offered exam mark will be applied!!!) Prerequisite for the exam is the signature. Midterm test results are included in the exam mark. Evaluation of exam mark: 0 - 49 % fail (1) 50 - 62 % pass (2) 63 - 75 % satisfactory (3) 76 - 87 % good (4) 88 - 100 % excellent (5) 				

Literature: on ''siva'' server: lots of textbooks and problem books can be found there which is related to the curriculum

Recommended:

- 1. C._Henry_Edwards,_David_E._Penney_Elementary_Differential_Equations; Prentice Hall, NJ 07458, 2008.
- 2. Strang: Linear algebra and its applications, Brooks/Cole,USA, 1998
- 3. Schiff: Laplace transform and applications; Springer
- 4. Thomas_Weir_Hass: Thomas calculus, Pearson, 2012
- 5. Mathews_Howell: Complex analysis for mathematics and engineering, Jones and Bartlett, 1996

Additional:

- 6. Paul Blanchard, Robert L. Devaney, Glen R. Hall: Differential Equations; Brooks & Cole, 2012.
- 7. Kuttler: Elementray linear algebra, Saylor, 2012
- 8. Boyce_DiPrima: Elementary differential equations and boudary value problems, Wiley@Sons 2001. etc.

Budapest, 15. June, 2022.

Dr. Laszlo Hanka PhD lecturer